描述
数学基础的好坏,会直接决定一个程序员的发展潜力。
往大了说,
数学是一种思维模式,考验的是一个人归纳、总结和抽象的能力。把这个能力放到程序员的世界里,其实就是解决问题的能力。
往小了说,不管是数据结构与算法,还是程序设计,很多底层原理和编程技巧都源自数学,比如你熟悉的分页功能,用的其实是余数的思想。所以很多大公司招人时,会优先考虑数学专业的毕业生。数学基础好,学编程也更容易上手。
如果说编程语言是血肉,那数学的思想和知识就是灵魂。它可以帮你选择合适的数据结构和算法、提升系统效率,并且赋予机器智慧。尤其在大数据和智能化的时代,更是如此。
因此,学数学绝不是死背那些艰深晦涩的定理和公式,洞悉技术本质,掌握知识规律,具备数学思维,拥有发现问题、分析问题、解决问题的能力,才是你的终极目标。
那程序员究竟该如何学习数学呢?在这个专栏里,黄申从编程的视角,结合自己十多年学术经验和工业实践,总结了一套适合程序员的数学学习方法和知识体系。希望通过“知识 - 应用 - 知识”的讲解路线,为你贡献一堂
实用、
精彩的数学课。
黄申,LinkedIn 资深数据科学家,博士毕业于上海交通大学计算机科学与工程专业,师从俞勇教授。微软学者,IBM ExtremeBlue 天才计划成员。长期专注于大数据相关的搜索、推荐、自然语言处理、广告以及用户精准化领域。
曾在微软亚洲研究院、IBM 美国研究院、eBay 中国、1 号店和大润发飞牛网担任要职,带队完成了若干公司级的战略项目。同时担任《计算机工程》特邀审稿专家,著有 20 多篇国际论文并拥有 10 多项国际专利。
专栏模块
专栏用 51 节,四大模块,精讲那些程序员真正用得上的数学知识。
梳理了编程中最常用的数学概念和思想,比如余数、迭代、排列、组合,由浅入深精讲数据结构与数学是如何你中有我,我中有你。帮你彻底掌握这些最基础、最核心的数学知识,同时也能让你明白,数学对编程和算法究竟意味着什么。
以概率统计中最核心的贝叶斯公式为圆心,向上讲解随机变量、概率分布这些基础概念,向下讲解朴素贝叶斯,并分析它们在生活和编程中的实际应用,在应用中反哺概念。让你真正理解概率统计的本质,跨过概念和应用之间的鸿沟。
从线性代数中最核心的概念向量、矩阵、线性方程入手,逐步深入分析,这些概念是如何与计算机互帮互助,融会贯通,解决实际问题的。比如,线性代数究竟是在讲什么?怎样让计算机理解现实世界?如何过滤冗余的新闻?从概念到应用,再到本质,让你不再害怕新技术中的“旧知识”。
将通过缓存系统、搜索引擎、推荐系统中的实际应用,串讲前面讲到的数学知识和概念,帮你加深对知识的理解,学会用数学思维来分析问题和解决问题,让数学思维成为你的一种基础能力。